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AImtraet--Linear stability analym is being widely used m exploring gas-liqmd stratified/non-stratified 
transitions. As the present study relates to liquid-liquid two-phase systems, the stablhty characteristics of 
stratified layers are considered In parallel, the conditions necessary for real characteristics are also 
explored The relations between stabihty conditions and those for well-posedness are discussed in view 
of the implications for flow pattern transitions The convergence of the stability conditions to various 
extremes is discussed. The integrated considerations of stability and well-posedness shed light on the 
physical sequences in flow pattern transitions, which so far have been studied by stability analysis alone. 
As hquid-liqmd systems are revolved, wide ranges of density and wscosity ratms are studied for various 
operational conditions. 
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I N T R O D U C T I O N  

The majority of the extensive literature on two-phase flows refers to gas-liquid systems. Indeed, 
the intensive research activities regarding a variety of aspects of gas-liquid flows have contributed 
to a wide understanding. However, there have been relatively very few studies which focused on 
liquid-liquid two-phase flows. As gas-liquid studies cannot readily be translated to liquid-liquid 
flow predictions, there is generally an inadequate understanding of the mechanisms and interactions 
of liquid-liquid systems. 

The authors attempted recently to model various two-phase liquid-liquid flow patterns, such as 
stratified flow (Brauner & Moalem Maron 1989), annular flow (Brauner 1991) and highly viscous 
core flow (Moalem Maron et al. 1990). Of particular interest is the existence of transitional 
boundaries of these and others possible flow patterns. 

In exploring the transitional criteria, one of the basic approaches which may shed light on 
the range of existence of a specific flow configuration is undoubtedly a stability analysis. For this 
reason, the use of this approach in gas-liquid studies has become more frequent 0Vallis 1969; 
Jones & Prosperetti 1985; Lin & Hanratty 1986; Prosperetti & Jones 1987). However, gas-liquid 
systems represent only one extreme with low density and viscosity ratios, both of which play central 
roles in approaching instability. 

Thus, in its first dimension, the present work aims to analyse stability conditions for the wide 
ranges of density, viscosity and velocity ratios encompassed in liquid-liquid systems. Stratified flow 
is addressed, since it is considered to be one of the basic flow configurations, which is bounded 
with other possible flow patterns. The second aspect, dealt with herein, is the development of the 
conditions under which the set of the governing equations constitutes a well-posed initial-value 
system, whereby real characteristics are obtained. Clearly, the range where the conditions for 
well-posedness coincide with those for stability is of particular interest from the point of view of 
the existence and transition of flow patterns. 

The two-fluid uniform velocity approach (depth-averaged equations) is used, as is commonly 
adopted in numerous gas-liquid studies (Lyczkowski 1978; Ardron 1980; Banerjee & Chan 1980; 
Banerjee 1985; Hancox et al. 1980). The simplified two-fluid uniform velocity formulation facilitates 
a rather convenient and efficient analysis of both instability and ill-posedness in a pipe geometry 
with the inclusion of the various shear stress terms. The relations between stability and well- 
posedness may provide some insight on the relation between the stability of the interfacial structure 
and transitions to other flow configurations (Brauner & Moalem Maron 1992). 
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Phase a 

Figure 1. Schematic descnptlon of a stratified configuration. 

THE PHYSICAL SYSTEM 

Consider a stratified flow of two immiscible fluids a and b in a horizontal (or slightly inclined) 
conduit. The flow configuration and coordinates are as described in figure 1. Clearly, under the 
conditions of stratified flow, the lighter fluid forms the upper layer. As the analysis aims to explore 
the stability features of this flow pattern, the transient continuity and momentum equations for 
the two fluids are addressed. With reference to figure 1, the two-fluid one-dimensional integral 
equations are 

a +__o 
Ot (pbAb) OX (pbAbUb) = 0, [1] 

a (p,,A,,) + ~-~ Ot Ox (p.Aou~) = O, [2] 

O O O dab 
ot (PbAbUb)+~x(PbAbybU~)= --TbSo+z'S'+pbAbgsin[3--~x (A~Pb)+ P'b Ox ' [3] 

and 

O O O OA~ 
ot (P"A"u")+~x (P"A"?°u])= - % S " T ' z ' S ' + p " A ° g s i n ~ - ~ x  (A°P")+ P" Ox ' [4] 

where the upper sign in [3] and [4] corresponds to phase a faster than b. The variables A, S, ~ and 
u are the flow cross section, the wetted perimeter, the wall shear stress and the average velocity 
of the two fluids, z, is the interfacial shear stress. The shape factors, 7, and ?b are defined in terms 

t . of the local velocity profiles, U~.b. 

= - -  u~ 2 dAb. ~,,, = A,,u~a u,, dA~; 7b Abu~ ,)o [5] 

The pressure at each phase varies due to gravity, hence the average pressures P~ and Pb differ from 
the corresponding values at the common interface, P,. and P,b" The latter may be different due to 
surface tension effects. The average pressure at each phase, in terms of its pressure level at the free 
interface, y = h, is given by 

and 

O (PoAb)= O I ae O Oh O---x ~x ,Jo [P,b + pbg cosfl(h -- y)] dAb=-~x(P,bAb) + pbg cos~Ab-~x 

c3 (PaAa) = 0 I a" t~ Oh 
tg--x ~xx do [P'a-p~gc°s[J(Y-h)]dA"=-~x(P"A")+p~gc°sflaa~x" 

[6a] 

[6b] 
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Substituting [6] into [3] and [4], while utilizing [1] and [2], respectively, to eliminate the terms 
/bt (pA)a.b and substracting, the resulting combined momentum equations for the two-phases read: 

[ _~ ua]dAsOh Oh (OP~-aP~)  
Pb(I--Ts) b'{-pa(l--7a)~-~= "-~-~+(pb--pa)gCOSfl~X'1 aX 

(~Ub dub a ~ua ~Ua 
+ P s - ~  + Ps?sus-~x -- P --~ -- Pa?~Ua-~x =Af~b [7] 

and 

Afab=--Zb-~bb+ZiS,~-~bb+Z ~a +(pb--pa)gSinfl. [8] 

The effect of surface tension, ~, is now incorporated in [7] by assuming P,a V~ P,b, the difference 
in which is given by 

O2h 

0 0 Ox 2 
( e , s  - P,o) = a x  1 + _! 

It is worth pointing out at this stage that [7]-[9] with the continuity equations [1] and [2] 
constitute a general frame of formulation, except the r.h.s, of the momentum equation, Arab- The 
term Af~ includes shear stresses, which are to be modelled in terms of the flow variables h, Ua and 
Ub, according to the particular physical situation under consideration. As most previous works have 
addressed gas-liquid stratified flows, where Pa < Pb, #a < #b and Ua >> US, the term Afa s has attained 
a rather specific modelling. In contrast to the gas-liquid case, the liquid-liquid systems studied 
herein cover the whole range of density and viscosity ratios, whereby the velocities of two phases 
may be of comparable levels and the velocity of one phase may exceed that of the other. Therefore, 
an approach of "adjustable definitions" for the hydraulic diameters of the two fluids, depending 
on the relative velocity, has been introduced by the authors for liquid-liquid analyses (Brauner & 
Moalem Maron 1989). According to this approach, the interface is considered as a solid with 
respect to the fast phase and as a free surface with respect to the slower phase. Detailed modelling 
of Af, b in terms of h, u~ and us is described in the appendix. For the sake of generality, the analysis 
proceeds herein in terms of Af~ = Aft(h, Ua, US). 

STABILITY ANALYSIS 

In order to proceed with the analysis towards the instability and transitional criteria, [1], [2] and 
[7]-[9] are first linearized around a smooth fully-developed stratified flow pattern (H, U~, Ub), 
whereby: 

h H + h * ;  ua=Ua+ *" = ua, Ub = Ub + U~'; AFt(H, U., Ub) = O. [lO] 

Here, H, Uo, Ub and AFab a r e  obtained by solving the fully-developed stratified flow for a 
given set of input flow rates of the two fluids involved, as presented elsewhere (Brauner & Moalem 
Maron 1989). Based on [10], with h*/H, u*/Ua, u*/Ub < l, the linearized forms of [l], [2] and [7] 
a r e  

where 

T~+ J/=F~/, 

i  0001 [ 0 1 T =  -- A'b 0 , X = - Atb Ua 0 A a 

N Pb --Pa G Pb~bUb --Pa~aUa 

[llal 
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F =  

0 0 0 
0 0 0 

OH OUt, OU,, 

, q =  

h *  

u* ; 

u* 

a = ( p b - - p . ) g c o s / 3 - - a - ~ x 2 ;  N =  pb(l--~A) +P,,(1--~',,)~a a At,; 

(dAb~ ; O AF~ O Af~ h."  O AF~ O Af~ I 
A'b= \ dh II( h=m O-H = -~  ; - ~  = Ou .=v [1 lb] 

No i 0 AF=o co t OF=b 
- k  - + ( p b - p a ) g c ° s f l + a k 2 q  k OH Pb-k +PbTbUb+kO---'~b 

A non-trivial solution exists under the conditions det M = 0, whereby the dispersion equation is 
obtained: 

aC 2 - 2(bl + ib2)C + d~ + id 2 = 0; C - o~/k [14a] 

and 

C~.z = 1 (b, + ib2) +_ 1 [(b, + ib2) 2 - a(d~ + id2)] '/2, [14b] 
a a 

where 

A~ A; 
a=o Z+po Z, 

1 (A'bOAFao A'bOAF.b~ 
b~= ~ k A~ OU, Ao OUo ) '  

A'  A'b 
d, = p~ -~ ~ U~ + Oo -7- ~o U] - [(m - Po)g cos/~ + ak ~] 

.,i b A.  

A '~ U~ ) 

Ao 
1 

co L0aF~ / 
P°~-P°~'°u°+ k ouo J 

Mtj = 0; # = (r~, Lib, ~ ) T ,  [13] 

M = 

where 

It is worth noting that T and X include the coefficients (of time and space derivatives) evaluated 
at the fully-developed point (Aa, Ab at h = H). Similarly, F represent the derivatives of AF~ with 
respect to H, Uo and Ub, as detailed in the appendix. Note also that the shape factors relate to the 
fully-developed profiles, and their time and space variations for small perturbations are of minor 
consequence. 

In order to investigate the stability of [1 la], far away from the boundary x = 0, the usual 
temporal formulation is followed: 

h* = nre~k~-~'); u* = ~.e'¢kx-'~'); u* = ~be'(kx-'~0; [12] 

where k is a real wave number, co = Ck is a complex angular velocity and/~, ft. and fib are (complex) 
amplitudes of the perturbations. Introducing [12] into [1 la] yields 
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and 

I (A'b ubO AF~ A'b UoO AF.b O AF,~'~ 
d2='# \A  b OU o A. O""~a ~ ]. [14c] 

For k--* 0% both b2 and d2 degenerate to zero and 

C,,: = b2 + 1 (b~ - ad, ),/2. [14all 
12 12 

Equations [14a-d] represent the relationship between the (complex) propagation velocity of the 
disturbance, C = o~/k, to its (real) wave number, k, for a given system geometry and flow 
operational conditions. The sign of the imaginary part of C determines the stability of the flow, for 
if there exists any k for which C, = J~v~[C] > 0 the stratified flow configuration is unstable (see [12]). 

With reference to [14d], for short-wave disturbances, k--,oo, the quadratic equation [14a] 
comprises real coefficients, in which case stability is obtained provided the discriminant 
b ~ - adl >1 O, whereby 

A; A;U'~2 /, A; A;'~ 

x (Apgcos f l+~k2) -pb?b  ¢yb--O°?.--z-U2. ) 0 ;  k--.oo. [14el 
b 

Equation [14e] for short-wave disturbances is independent of the shear stress modelling, AF.b. 
With the inclusion of surface tension, this condition is always satisfied for sufficiently large k 
(short waves). However, when surface tension is omitted, an unstable situation may also result for 
large k. Clearly, the one-dimensional formulation (lateral pressure varies due to hydrostatic effect 
only) is more valid for long-wave modes. 

For C, = 0, the so-called neutral stability conditions are obtained via [14a-c]: 

A; a AF.~ A ; u a AF.~ O AF.b 
c = = U" T o T  A. a---W, a n  

[15a] 
2b2 A; O AFob A; a AFob 

Ab aUb A° OU. 
and 

A; A') _2 f A; A;UX.  b 2 pbZ+po Z co I ob  AV +po . Z 
' A" Ab U~-{- b 2 +PbVb"~b p,~,--~=U,-(Apgcos/]+¢k2.)=O. [15b] 

Note that, [15a] represents an explicit expression for the real neutral stable wave velocity, Cry. 
Inspection of [15a,b] indicates that while [15a] is directly related to the specific modelling of the 
various shear stresses terms in the two-fluid momentum equations, [15b] is free of the wall and 
interracial shear strcsscs modelling and evolves essentially from the continuity equations and the 
l.h.s, of thc momentum equations. In this scnsc, the form of [15b] is general and is affected by the 
modelling of shear stresses only through the Cm valuc as determined by [15a]. Moreover, [15b] 
accounts for thc velocity distribution (laminar or turbulent) by adjusting appropriate shape factors. 

For the sake of physical interpretations and comparison with previous related studies (Wallis 
1969; Lin & Hanratty 1986; Hanratty 1987), [15b] is now rearranged in the following form: 

. - - - y g ~ , . , . . - - - 1  -+-(y . - -1)1-2--~ .  
16Dg cos fl lob A. L\ uo 

U" L~-U~-~ Uo/JJ-  L # + obg cos/~j = o, [15b'] 
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with 

Qb. ,~b = A~,b. d-~b H 
vo,= ; . 2;=d--f l ;  B = 3 - .  [16] 

Here, the superficial velocities of the two fluids, U,~ and Us, are introduced. In [15b'] gravity (for 
Pb > Pa) and surface tension terms can be both identified as stabilizing forces. On the other hand, 
the rest of  [15b'] includes the destabilizing effects of  the two fluids inertia. For instance, increasing 
either of  the fluid flow rates, may result in an unstable situation. 

It is to be emphasized that the disturbance propagation velocity, Cm is generally different from 
the average velocities of the two fluids, and thus the positive terms of (C, JUa-1) 2 and 
( C r n / U t ,  - 1) 2 are the destabilizing effect. Therefore, while the neglect of  Cm/Uo may sometimes be 
justified in horizontal gas-liquid systems (Ua - UG >> C,~ and Cm ~-- UL), it is generally unjustified 
in liquid-liquid systems, where the velocities of the two phases are comparable and the velocity 
of one phase may exceed that of  the other. Also, note that ~,~ > 1 and Tb > 1 are destabilizing 
contributions only for Cm/Ua and Cm/Us < 1/2. 

It is further of interest to demonstrate simplifications of [15b'], relevant in some particular 
physical situations: 

(a) In the extreme of gas-liquid flow, with Uo >> Cm and p# ,~ Ps, and when turbulent 
regimes prevail in both the gas and liquid phases (y~, ? s -  1), [15b'] reduces to 

16Dgcos~LpsA]VL+-~,,Us'~-t-~b -1 -- \ Ps Psg cos fl =0.  [171 

Equation [17] is similar to Lin & Hanratty's (1986) expression, derived for a 
gas-liquid system (with Ap/ps ~- 1), except that [17] also includes surface tension 
effects. 

(b) Further simplification relevant to gas-liquid flows can be obtained when the time 
and space variations of the (lower) liquid velocity are ignored, whereby [1] and 
the l.h.s, of  [3] both degenerate, implying that a quasi-steady-state is assumed 
for the lower fluid. Clearly, [13] reduces to a two-dimensional form with respect 
to (~, rio), which for a non-trivial solution yields 

( i OAFos\ U~- ~-~,b(~g cosfl +p,, C2+ 

p-oki \As(~ a a---HAF°' a AF~b\ + vo--gOT) =o. t181 

The conditions for neutral stability, by [18], now read: 

2/C~ 1"~ 2 16D_~_A. 3 
UaJ:7-.kU. - ] = ~--'i (Apg cos fl + ak 2) [19a] p~A 'b 

and 

c =  O-----n + ) [19b] 
AFos 

aUo 

Equation [19a], for C,~ ~ Ua (as is usual in a horizontal gas-liquid system), is 
similar to the criterion obtained by simply applying Bernoulli's equation in 
the gas phase with a stationary interfacial disturbance ( C ~ -  Us, otherwise 
unknown). However, the present analysis includes Cm/Ua in [19a], while [19b] 
provides the Cm/Ua value in terms of the flow conditions. Note that when 
Cm = Us and Va,b---- 1 are introduced into the general stability condition, [15b'], 
[19a] with Cm = Us results. 
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Table I Non-dimensional geometrical variables 
Circular pipe 

Rectangular channel 

,s,-l_L 

2 = A I D  2 

& = a . / O  2 

2b = AdO' 
g== sore 
g~ = s , / D  
g, = s , m  

oo = 2/tlo 
o~= 2/2, 
g; = d:Ib/d// 
g :  = d ~ . / d / /  
g; = d,~' , /d/ /  

2; = d2b/d// 

= / 4  
~{eos-'(2//- 1)- (2//-  1)[1 - ( 2 / / -  1)2] '/2} 
l{n - c o s - ' ( 2 / / -  1) + ( 2 / / -  I)[1 - ( 2 / / -  1)2] I/2} 

cos- t(2//- 1) 
n - cos-t(2//- 1) 
[1 - ( 2 i l  - 1)2] la 
n/{cos-l(2//- 1)- (2//-  1)[I - ( 2 / / -  1)2] la} 
n/{n - cos-t(2//- 1) + (2/ /-  1)[1 - -  (2/ /-  I)2] t/2} 
1/[//I/2(1 _//)t/2] 
_ 1/[//1/2(1 _ / / ) 1 / 2 ]  

-2(2/ / -  1)/[I - ( 2 / / -  !)2] ~/2 
[1 - ( 2 / / -  1)2] I/2 

LID  = ~. 
(1 - / / ) £  
i1£ 
2(1 - - / / )  + E 
2//+E 
/7, 
1/(1 - - / / )  
1/1-1 
2 
-2  
o 
£ 

(c) In liquid-liquid systems, the lower fluid is sometimes much faster and an extreme 
situation, similar to case (b), results. Such an extreme situation may be of 
practical relevance, for example, in the transportation of a waxy oil-water 
system. Ignoring now the time and space variations in the upper fluid velocity 
yields, for the neutral stability conditions, 

2 {Cm "~ 16 1/2-- fl +o'k 2) - -~ Pb A 'b (Apg cos 

and 

[20a] 

/ dAF~ A s d A F ~  

Cm=LUs ~ A; t~H ] [20b] 
AF~ 

~Us 

(d) For stratified flow between horizontal parallel plates, where, A s = ~D, A "b = 1 
and A =  = (1  - ~)D (see table 1), the equivalent of [15b] reads 

1 f U 2 [ ( C m  )2 ( C~,-] p. U 2 
D g c o s f l ~ - t ~  "-~-b - 1  + ( 3 ' s - l ) 1 - 2 - ~ J J + ; ( 1 - - - - = ~  

C= _ + = O, [21] x [ ( - ~ - - 1 ) 2 +  (~=--0(1--2-~--~)]} \(Ps--P°Ps Psg -~oos ak2- fl,] '~ 

which is again in close similarity to the expression obtained by Hanratty (1987). 

It is to be noted that maintaining both continuity equations [1] and [2], while assuming quasi- 
steady momentum equations for either of the two fluids (as when referring to kinematic waves), 
again yields the simplified equations [18]-[20], as in cases (b) and (c). On the other hand, retaining 
d/ax while ignoring d/Ot in the momentum equation of the faster fluid does not simplify the 
resulting dispersion equation relative to the general case of [14a-d]. [The term (1 - C~/Uo) 2 in 
[15b'] is then replaced by (1 - CrJU=) if U= >> Ub, or (1 -- CrJUb) 2 is replaced by (1 - C=/Ub) if 
us,> uo.] 

CONDITIONS FOR REAL CHARACTERISTICS 

The continuity equations [1] and [2] with the combined momentum equation [7] constitute the 
governing set of transient equations. The initial-value (hyperbolic) equations set is well-posed, 
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provided it possesses real characteristics. As the test for reality of characteristics is carried out 
around an initially fully-developed stratified flow pattern (at t = 0), [1 la] is used as the working 
set, whereby the characteristic roots, ~, are obtained by 

det(T - ~. X) = 0. [22] 

As the well-posedness test will be carried out below in relation to the growth of harmonic interfacial 
disturbances, ¢r a3h/ax3= - ~ k  20h/~x; whereby [22] reads 

' .,4 t 
As U 2 -b PaYa -~a U2a -- (Apg cos fl + ak 2) = 0. [23] + Ps Vs 

The condition for real characteristics is now obtained from [23] by avoiding any complex root for 
2. Thus, 

Pb~b-~-~bUb+p,,7,,-.~U,, -- pb'-~b+p,,A, J 

x - (Apgcos~+ak2)+pbTs-~bg~ ,+p .~ ,  . g2. >10 [24al 

o r  

D 
- - ( A p g  cosB + ~k2) + ~sys(Ts - 1)U~ + ~ . ? . ( ? . -  1)U~-(~sUs-~.U.)2>10,  [24bl 
Pob 

where 

os2o - 2; o.ps p.2; 

AQ As 

Inspection of [24b] points out that for the case of zero gravity and zero surface tension terms, the 
basic continuity and momentum equations for plug flow (~, = 7b = l) are obviously ill-posed, as 
demonstrated by Ramshaw & Trapp 0978) for inviscid systems and ~, = Ys = I. However, since 
the general solution of [22] and [23], as well as [24a,b], is independent of the viscous shear terms 
(r.h.s. of momentum equations, Af, s in [7]), the assumption of inviscid fluids has no effect. The 
inclusion of either gravity or surface tension, is thus, necessary for obtaining real characteristics 
in two-fluid plug flow, ~= -- 7b = I. However, for shape factors y,, 7s > l, well-posedness may still 
be obtained in the absence of gravity and surface tension forces. Stated differently, a velocity 
distribution is a stabilizing contribution. 

Some specific physical situations are demonstrated now in view of [24a,b]: 

(a) For turbulent flow regimes in both phases, when 7= = ~s ~ l, [24a,b] become 

(Us - U.) 2 ~< D (Apg cos fl + ak2); [26] 
P=~ 

which for particular system of horizontal gas-liquid flow, when Uo >> Us and 
A~/p, >> Ab/Ps, reduces to 

16 1 D2] 
U 2 ~ - - - -  (Apg cos fl + ak2). [27] 

/t2 pQ - " ~ ' -  

It is noteworthy, however, that it is necessary that both U=>> Us and 
A=/p= >> As/Ps hold for [27] to be a valid approximation. This may not always 
be the case, e.g. at relatively low gas-liquid flow rates ratios, in which case [24a,b] 
or [26] are to be used. 
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(b)  Another specific system of interest may be the flow between horizontal parallel 
plates (spaced a distance D apart) for which [24a,b] and [25] for Ya = ?b = 1 
simplify to 

(Ua -- Ub) 2 ~< D (Apg cos 13 + ak 2) [28a] 
P~ 

with 

1 . ~ = H .  [28b1 
P~ = O ~- (1 - a ) '  O 

Pb Pa 

RELATIONSHIPS BETWEEN STABILITY AND REALITY 
OF CHARACTERISTICS 

It is commonly believed that a correct mathematical presentation of physical situations ought 
to result in properly posed problems. In two-phase flow problems, however, the existence of an 
assumed physical situation, e.g. a stratified flow configuration, is not certain under all operational 
conditions. Therefore, complex characteristics (improperly posed initial-value problem) may not 
necessarily indicate an incorrect formulation, but may be attributed to a physical instability of the 
assumed flow configuration, whereby transition to a different flow pattern may take place. It is thus 
the purpose of the present discussion to show the overlap and distinction between the conditions 
derived herein for stability and reality of characteristics. 

The first comparison of interest is that between [14e] and [24a]. Inspection of [14e] and [24a] 
indicates that in the limit of very short waves, k ~ oo, the condition for stability of smooth stratified 
flow, [14e], and that for reality of characteristics, [24a], become completely identical, whereby 
b~-  adl >I 0 is required. It is noted that in the presence of finite surface tension and with k ~ or, 
[14e] and [24a] are trivially satisfied, independently of the specific operational conditions. For zero 
surface tension, however, either of the above two conditions define a range of operational 
conditions (U,~, U~), where both stability and well-posedness are assured for k--,o~. 

Another comparison of interest is the particular case of gas-liquid flow, where usually Cm/Ua--*O 
is assumed, and the stability condition given by [19a] and the corresponding one developed for real 
characteristics, [27], are again identical, independently of the disturbance wavelength. Clearly, for 
the symmetrical case of a much faster lower phase, Cr~/Ub-'*O, the regions for stability and reality 
of characteristics coincide again for the entire range of wave numbers. 

More general relations between stability and well-posedness can be derived by comparing [15b] 
and [23]. Both evolve from the l.h.s, of the continuity and momentum equations and are thus 
common to any one-dimensional stratified two-fluid model, independently of the specific (quasi- 
steady) modelling of the interfacial and wall shear stresses (r.h.s. of the momentum equation). Note, 
however, that [15b] is subject to [15a], which in turn relates directly to the shear stresses modelling. 
Equation [15b] for neutral stable conditions, as evolved from stability analysis, and [23] for the 
characteristic roots, are both quadratic with completely identical coefficients. Therefore, the 
existence of real characteristics for which the discriminant of [23] is positive (hence the discriminant 
for [15b] as well) corresponds to real solution for 2 = Crn. Yet, this alone does not ensure a (neutral) 
stable situation, since the real Cm obtained in this way does not necessarily fulfil [15a]. This is best 
explained with reference to figure 2. 

Figure 2 represents typical trends of the amplification factor, C, = J~a{ C } with the wave number, 
in terms of (U,,, U~) combinations, as obtained by [14a--d] for an oil-water system. For a certain 
set of (Ua,, Ub,), as depicted by curves (a), there exists no wave number for which the amplification 
is positive. Thus, for the entire range of k (or wavelengths), all disturbances are expected to decay. 
On the other hand, for other combinations of (U,~, U~), as in curves (c), a smooth (stable) 
interfacial structure is maintained for k > k,. For 0 < k < k~, or sufficiently long waves, where the 
destabilizing effect of surface tension becomes small, the disturbances are amplified and hence a 
wavy interfacial structure develops. The range of amplified waves, 0 < k < kn, varies depending on 
the (U,,, U~) combinations. For particular combinations of (U~, U~), as represented by curves (b), 
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the amplified range almost diminishes. In searching for all combinations of  (U~, Us) for which 
k, ~0 ,  a boundary which confines all possible smooth stratified flows, "zero neutral stability'" (ZNS) 
boundary, may be defined (Brauner & Moalem Maron 1992). 

For each combination of  (U~, Ubs) the range for amplified wave numbers is directly obtained 
by solving [15] for k,.  For the same (Uas, Ub~) conditions, [24a] is also solved for k = k~ beyond 
which (k > kr~) the characteristic roots are real. For comparison the minimum wave number which 
ensures real characteristics, k~, is also indicated in figure 2. For all k < k~, an unstable smooth 
stratified flow is consistently predicted by both stability and well-posedness analyses. However, for 
any k~ < k < k,,  while the governing equations [1]-[3] are well-posed as an initial-value problem, 
they are still expected to develop a wavy structure. 

It is to be emphasized that the value of k~ is always within the amplified range, k~ < k,,  as shown 
in figure 2. This can be rigorously understood in view of [23] and [15b]. With the minimum k ( =  k~) 
which renders a positive discriminant for [23], and therefore also for [15b], the C~ value obtained 
by [15b] does not necessarily fulfil [15a]. In order to obtain the "true" C~ of [15a], which certainly 
ought to be real, a larger k(=k,  ~k~) is required. Thus, as long as [24] yields a real k~¢ it 
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corresponds to an amplified mode. The first interpretation for this outcome is that reality of  
characteristics is a necessary condition for stability, but clearly not sufficient. Similarly to the ZNS 
boundary (defined for k,--,0), the limiting operational condition (U~, Ub,), which yields real 
characteristics for k~--*0, defines the "'zero real characteristics" (ZRC) boundary. The implications 
of  the ZRC and ZNS boundaries with regard to transition from smooth stratified flow is discussed 
in detail elsewhere (Brauner & Moalem Maron 1992). 

Figure 3 represents the variation of  the dimensionless amplification, o3, = kDCI/Uo and wave 
celerity, Cr/Uo with the normalized wave number, k/k,. In general, the amplification demonstrates 
a maximum for k < k, ,  which corresponds to the most amplified wave number, k = km. The 
corresponding wave celerity at k =km (for a given Ub,) may be higher, equal or lower than the wave 
celerity of  the neutral stable wave, k = k. ,  as demonstrated in figure 3(b). Note that figure 3 relates 
to oil-water flow, for which the lower layer b is always faster than the upper layer (Ub > Uo). As 
is shown in figure 3(b), the wave velocity at the amplified region, 0 ~< k/k, ~< l, is of  the order of  
the upper lower layer velocity Uo. 
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Complementary to figures 2 and 3 is figure 4, where the neutral stable wave number, k, and the 
minimum wave number for real characteristics k~, are compared. Consistent with figure 2, k~ is 
always lower than kn for all flow situations. Thus, for flow conditions below those of points it, 
at which k, = 0, no real solution for k, is obtained by [15b], implying a stable stratified flow. 
Similarly, the points denoted by rt, at which kr~ = 0, represent the limiting conditions below which 
real characteristics are always ensured, while beyond points r, reality of characteristics is ensured 
only for wave numbers higher than k~. As is indicated in figure 4, the trends of both k~ and k~ 
with increasing phase flow rates are not always monotonous. In general, the discontinuities in the 
kn curves [as in figure 4(b) at point i2] are due to flow regime transitions of one of the phases. 
Moreover, for particular U~ or Ub, multiple solutions for kn = 0 or k~ = 0 may be obtained. For 
instance, between i 2 and/3 and r2 and r 3 stable subregions result in addition to the stable region 
below it and rl. On the other hand, for sufficiently high flow rates [figure 4(c,f)] k, > 0 always, hence 
smooth stratified flow is unstable for 0 < k < k~. The k~ subregions between r2 and r 3 at high flow 
rates can be best understood in view of [26]. Between r z and r 3, Ua and Ub become close and for 
a finite gravity term, [26] does not yield a real solution for k~. It is worth noting here that the reality 
of characteristics, in general, is directly related to the velocity difference between the phases, 
whereas the stability condition is sensitive to the ratio between the interracial wave velocity and 
the phase velocity, Cm/Ua or Cm/Ub, see [15b']. 

The results so far relate to various flow conditions and a particular oil-water system for which 
Pa/Pb = 0.834 and #a/#b = 20.15 [experimental setting by Russell et al. (1959)]. As the present work 
attempts to study a wide range of liquid-liquid systems, the discussion proceeds hereon to 
demonstrate the effects of density and viscosity on the stability characteristics. 

Figures 5 and 6 show the effect of the density on various characteristic wave numbers (k,, km and 
k~) and the corresponding wave velocities at various flow conditions. With reference to figure 5, 
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it is seen that with an increasing density differential, both k. and kr~ decrease and thus the range 
of amplified wave numbers or that for improperly posed problems are both reduced. However, for 
high U~ or Us the effect of the density ratio is not a dominant one and the kn range is governed 
essentially by the flow conditions. Also, with an increasing density differential, the range of flow 
rates (U~ or Us) for stable smooth stratified flow increases• The maximum amplified wave number, 
kin, follows, in general, the k, trends. The discontinuities [as in figures 5(b,c) and 6(f)] are again 
due to flow regimes transitions. Note that in the equal velocity zone, Uo/Ub ~ 1, k~ may exhibit 
a limited subzone of U~ or Us where the formulation is well-posed with respect to all wave modes. 

In figure 6, the neutral stable and most amplified wave celerities [Cm and Crm normalized with 
respect to the slower phase according to figure 6(c,d)] are presented. Inspection of figure 6(a,b) 
reveals that the celerities are both of the order of the slower layer velocity, for a wide range of 
the velocity ratio, UJUb. Moreover, the effect of the density ratio on the wave celerity, as well as 
on the phases velocities ratio is practically negligible for P~/Pb = 0.5 to 1. Figure 6(c,d) shows that, 
in contrast to horizontal gas-liquid flows, in liquid-liquid systems the velocities of the two phases 
may be of comparable levels and the velocity of the upper lighter phase may be lower or higher 
than that of the other heavier layer. 

Some additional information may be derived by referring to the maximum amplification rate, 
as in figure 6(e,f). The maximum amplification rate (normalized with respect to the slower phase) 
increases with a decreasing density difference, indicating again more favourable conditions for the 
evolution of wavy interracial structure and hence departure from smooth stratified flow. 
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In parallel to figures 5 and 6 the effects of  the viscosity ratio on the instability characteristics 
are briefly summarized in view of figures 7 and 8. In principle, increasing or decreasing the viscosity 
ratio (#=//~b > 1 or #a//zb < 1) is associated with a larger velocity gap between the two layers, due 
to the larger viscosity differential, A/z, as demonstrated in figure 8(b). Consequently, for a given 
density ratio and flow rates (U~, Ubs), in general, a larger viscosity gap affects flow instability. 
Indeed, as shown in figure 7, the departure from equal viscosities (/~/#b #: 1), corresponds to 
increased k. and k=, implying a wider range of unstable modes with more intense amplification 
rates [see figure 8(c)]. However, the instability characteristics are not directly related to the velocity 
gap and also depend on the other flow variables. For instance, the neutral stable wave number, 
k,,  relates among others to the non-dimensional wave velocities, C~,/U~ and Cm/Ub (see [15b']). 
These are presented in figure 8(a), and are shown to vary over a wide range with an increasing 
viscosity gap. At high viscosity ratios, /~=/#b >> 1, the interfacial wave celerity may significantly 
exceed the slower (viscous) layer velocity (Cm/U= >> 1). 
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FINAL NOTES 

It is of interest to comment further on the instability characteristics of the basic stratified 
configuration by referring to an alternative spatial instability formulation of the governing 
equations and its relation to the temporal formulation. Also, the non-dimensional groups which 
govern the instability conditions are identified and discussed. 

Spatial formulation 

The temporal formulation [12] has been used by most investigators in order to analyse flow 
instability. The temporal formulation assumes harmonic disturbances in space (x) which are 
imposed at a specified time (t = 0), and which may grow or decay with time. Clearly, a non-periodic 
disturbance may be described, in the frame of linear analysis, in terms of periodic modes by the 
appropriate Fourier series expansion (in x). On the other hand, spatial formulation assumes 
disturbances which take place at a specified location (x = x0) and are harmonic in time. Again, 
any non-periodic disturbance in time may be analysed in terms of its (time) Fourier series 
presentation. In this case the assumed disturbances grow or decay spatially. 

In reality, the stratified flow is exposed to random perturbations in space and time, and thus 
temporal and spatial formulations, though they represent simplification of the physical situations, 
may provide complementary information. In addition, for some particular problems, the spatial 
formulation ought to be adopted (as in the analysis of stationary waves or artificially incepted 
waves by a wave maker). From the mathematical point of view, while the temporal formulation 
assumes a real wave number and a complex wave frequency (or velocity), in the spatial formulation 
the frequency is real and the wave number is complex. 

Following the spatial formulation, the perturbations in [12] are assumed now to be of real 
frequency, 09, and complex wave number, k. Introducing [12] into [lla], the condition for the 
non-trivial solution reads in this case: 

where 

and 

trk 4 + ak: + [2b~ - ib2]k - (ct + ic2) = O, 

, A '  b fl. 2 Ab U~ - p,,~,,, 
a = (Pb - P.)g cos fl -- PbTb ~ Aa - - a ,  

ob z 1+ v,+o° z j.o-  09. 
A 'b d F, b A 'b d F.b d F~b 

b2=zVb  Zv°  an 

[29a] 

, ( A ; d r o ,  
Ab - - - 0 9  ct = pb"~b + P,, co 2, 

A . ]  \ab  dUb A, dU,)  
[29b] 

Equation [29a], in contrast to [14a], is a fourth-order algebraic equation for the complex wave 
number (given a specified 09). It determines the unstable modes; for if k, = J~n(k)<0 ,  the 
disturbance of a frequency, co and a wavelength given by 27r/k, (originated at some specified 
location) will grow downstream. Note that for zero surface tension, or in the limit of weakly 
amplified long waves (Ikl ~0),  [29a] reduces again to a quadratic equation which yields an explicit 
expression for k in terms of the frequency: 

b~-  4--  b ~ -  + a(ct + ic2)[ ; a--,O or Ikl~0. [30] a 

Of particular interest are the conditions for neutral stability, k, = J~n(k) = 0. Utilizing real k in 
[29a], the requirement for non-complex solutions for k(09) leads to two relations identical to [1 5a,b] 
as obtained with the temporal formulation. Hence, as long as instability and transition are explored 
with reference to the neutral stability conditions, the temporal and spatial formulations are 
equivalent. Moreover, for the weakly amplified waves near the neutral stable modes, the spatial (S) 
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and temporal (T) solutions can be related by the Gaster's (1962) transformation (Brauner et al. 
1987), whereby 

k, (T)  = k,(S), co,(T) = (Dr(S), OJ,(T_....~) = __0(,O.......~ r = 0(krCr......~ ) = - C g ;  [311 
k,(S) Okr Ok, 

where Cg is the group velocity• For non-dispersive waves the group velocity equals the phase 
velocity, Cr. Indeed, as shown in figure 3(b) the amplified modes may demonstrate a weak 
dispersion, in which case by [31] Cg - Cr and the temporal and spatial amplifications are simply 
related by the (real) wave celerity• 

Non-dimensional groups 
Equation [15b'] for neutral stability conditions and [24b] for ensuring well-posedness are, in 

essence, the governing relations for exploring the instability of the otherwise smooth stratified 
configuration. The non-dimensional forms of [15b'] and [24b] are: 

A.~.~ [(Cm 1 ) ( 1 -  2 Cm AgL\~-0 2+ ('a-- ~)] Fd 
2'bVfC~ )2+(y  b 1)(1 ) I F ~  + / ~ W % F ~ )  0; [32a] +~-3 - - - 1  -- - 2 C ~  16.1 
AbL~,u. ~ - -~(  = 

F d = P~ V2~ • Fr~ = Pb U~ = Pb Fd u,~ 
ap ng cos I~' ap ng cos---------# p-~ ~--~-; ~ = --v~ 

= ¢7 = Pb Web. 
[~=kD; Wea p~DU~ p~ ~b 2 '  [32b] 

and 

Pb?b(?b-- 1) PaY~(Y~-- 1)~ 2 16 -2 ~2 /Tb ~ '~2 
+ -2 + _---~ (Fr~ + W e ~ k ~ ) -  I T -  =0; [33a] 

Aa Ao] k,% 

p~ U 2, a 
Fr~b = ApDg cos fl, Weab = Dp~ U~: ; [33b] 

where Fra, Frb, Frab, We~, Weab and k" represent Froude, Weber and non-dimensional wave 
numbers, respectively. For ~a, 7b = 1, [33a,b] reduce to 

" t "  ) - I (  l L ~  2 Wea~2). [34] 7Z2Ab(paA_~a+l _ = (Fr:2 + 
-fg Z \pb Ao ~ Ao} 

Inspection of [32]-[34] indicates that for a given pair of fluids, the ZNS boundaries, [32a,b] with 
kn = 0, as well as the ZRC boundary, [33a,b] with k~ = 0, are determined by three parameters: 
•2 and q~, which are the steady-state parameters (see the appendix), and an additional Froude 
number (Fr a or Frb) which evolves in the stability analysis. The relationships between the X 2 and 
~b parameters depend on the fluids physical properties of the fluids and the flow regimes of the 
phases (Brauner & Moalem Maron 1989). The Weber number, which is relevant for determining 
the stability characteristics, is irrelevant at the transitional boundaries when derived with reference 
to kn-,O and k~-~0. 

Implications for flow pattern transitions 
The analyses of stability and well-posedness presented above are aimed at establishing a basis 

for the construction of the complete transitional boundaries from stratified flow to other bounding 
patterns in a variety of two-fluid systems. The application of the integrated frame of stability and 
well-posedness considerations for constructing flow pattern maps is the focus of the companion 
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paper (Brauner & Moalem Maron 1992). Here, however, some of the relevant outlines are briefly 
noted. 

The stability and well-posedness analyses yield two boundaries of particular interest: the ZNS 
and ZRC lines as defined in relation to the limit of zero wave number (long waves). These two 
boundaries constitute a "'stability and well-posedness" map. In this map, the region beyond the ZNS 
line represents the range of operational conditions, for which the interface is associated with 
the evolution of amplified modes. Beyond the ZRC line, part of the amplified modes are ill-posed. 
It is shown that while the ZNS line represents a lower bound for the transition from (smooth) 
stratified flow, the ZRC line relates to an upper bound for the existence of a (wavy) stratified 
configuration. This implies that the departure from a stratified pattern is not predictable by a single 
stability criterion but rather in terms of a "buffer" transitional zone, as is formed between the ZNS 
and the ZRC lines. 

The exact relations between the "stability and well-posedness" maps and detiled guidelines for 
constructing flow pattern maps in liquid-liquid, gas-liquid, horizontal or inclined systems will 
follow in subsequent studies. 
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A P P E N D I X  

Quasi-steady Modelling o f  Shear Stress Terms and Their Linearized Forms 

The governing combined momentum equation, [7], requires the expressions for %, Tb and ~, in 
terms of the velocities of the two fluids. As conventionally used in two-fluid models, the wall shear 
stresses T a and % are expressed in terms of the corresponding friction factors fa and fb: 

2 

% = L p a  2 ; {Daua'~-" /a=ca -V7 ) tA.lal 

and 

=foPo ~2 fo = = co Re~ -"b. [A.lb] Tb 

Note that the corresponding Reynolds numbers for the two fluids are based on the equivalent 
hydraulic diameters, defined according to the relative velocity of the phases: 

4A~ 4A0 
Da - ( S~ + S,-------~) ; Do = T o  for ua > u0 [A.2a] 

Da = 4Aa. D b = 4A----------L--b for ua < ub [A.2b] 
So ' (So + S,) 

4Aa. Do = 4Ao for ua = uo. [A.2c] 
° " -  Sa ' S--7 

In contrast to gas-liquid flows (where the gas velocity is of a higher order of magnitude and 
therefore the interface is considered as a free surface with respect to the liquid and as a stationary 
surface with respect to the fast gas phase), in liquid-liquid systems the velocities of the two phases 
may be of comparable levels and, alternatively, one phase velocity may exceed the other. Therefore, 
an adjustable definition of the equivalent hydraulic diameter as part of the solution procedure needs 
to be adopted (Brauner & Moalem Maron 1989). 

The constants ca, CO, na and nb in [A.1] are chosen according to the flow regime in each phase. 
Clearly, the two phases in stratified flow may result in laminar-laminar (L-L), laminar-turbulent 
(L-T), turbulent-laminar (T-L) or turbulent-turbulent (T-T) regimes. These constants are given 
the following values: c = 16, n = 1 for laminar flow; and c = 0.046, n = 0.2 for turbulent flow 
conditions. 

In [1], [2] and [8], z, stands for the interfacial shear stress between the two layers. A positive z, 
corresponds to a faster upper layer or, in general, 

with 

z, = f p(uo - Ub)" , [A.3] 
2 

p = p ~  and f = B f a  for ua>U0 

P=Po and f = B f 0  fo rub>ua .  

Equations [A.3] imply that the interfacial shear friction factor is evaluated as equal to that obtained 
between the faster phase and the pipe wall, augmented by a factor B due to interracial waviness. 
For uo "-" u0, z, is identically zero and thus the interface is considered as a free surface with respect 
to both phases, consistent with [A.2c]. 

The linearization of [7] requires, furthermore, the linearized forms of the various shear stress 
terms around the smooth fully-developed stratified flow defined by Ua, U0 and H. Thus, consistent 
with [A.1]-[A.3], the three members of the matrix F defined in [lla] are: 

-~-~o= - S o  fbU o 1-- + S, + Abj OUo, 
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&, J" -Bf.p.(U.- u~) 
dUb= "~L Bfbpb(Ub -- U.)[1 ~ (Ub -- U.)] 

U. > Ub, 

uo< u~; 
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[A.4b] 

[A.4c] 

OF.b S . ~ f a U a ( I - ~ ) + S , ( ~ +  I~ Or, 
Zj -fo; [A.5a] 

and 

O~, = ( Bf°pa(Ua-- Ub)I1 

OU= --BApbpb(U b -- U.) 

na(U.--___V~) 1 
2 U. j U:>Ub, 

v.< v~; 

I O (Sb) lfS,'~ .20fb (S,+S,~ 

+gs, + so(u . -  
- - ' t ~ ) + ' " ~  Z +~Z °° .t,g)] , 

[A.5b] 

[A.5c] 

[A.6a] 

u° 

Of a *=n - O f " -  -n . -~ \  A,+ --<.re 

-~ ~ _,z. ~ s , -sA v. 
" O - A a -  S, +-=---~,) -~b >re' 

--nb~ (--  ~< re 

[A.6b] 

[A.6c] 

0H=a--~; P=Pb; Ub>U. 

aS af. 
0H=0---~; P=Pa, Ub<U,. [A.6d] 

Where re is a prescribed velocity ratio for switching from [A.2c] to [A.2a] when U, > re U~, or from 
[A.2c] to [A.2b] when Ub > re U,. Note that the various steady-state flow variables required in the 
above equations are determined from the steady-state solutions in temrs of non-dimensional X 2, 
Y and $ parameters defined by (Brauner & Moalem Maron 1989): 

4cb Pb UL 
D(Ub, D~-'b 2 

ck U~ . X2 = \ vb / . y =  ( P b -  P,)g sin fl [A.7] 
= Ub~' 4c= Pa U~' 4c, p~ U~" 

2 D(uoo n. 2 
\ v . /  k v . /  


